Edelweiss-II : Dark matter direct detection @ LSM

Gilles Gerbier- CEA / IRFU

http://edelweiss2.in2p3.fr/

Direct detection of dark matter : principles

• A well-identified science goal:

Detect the nuclear recoil of local WIMPs inside some material Target the electroweak interaction scale, m ~ GeV-TeV

Direct detection of dark matter

• A well-identified science goal:

Detect the nuclear recoil of local WIMPs inside some material Target the electroweak interaction scale, m ~ GeV-TeV

- At least 3 strategies:
 - Search for a global recoil spectrum => limits

From Edelweiss-I to Edelweiss II:

- Based on the experience from Edelweiss-I 1kg :
 - Conceptually close to CDMS
 - Cryogenic bolometers with heat+ionization channels ⇒ identify bulk gamma-rays
 - Was already limited, in the end, by the <u>presence of</u> <u>surface (β) interactions with incomplete charge</u> <u>collection</u>
 - 62 kg.d with 3 detectors (final results 2005)
- Edelweiss-II :
 - Completely new setup : host up to 100 detectors, of different kinds
 - Development of new detectors

EDW-II:

- CEA Saclay
- CSNSM Orsay
- IPN Lyon
- Institut Néel Grenoble
- FZ / Universität Karlsruhe
- JINR Dubna

Edelweiss collaboration

◆ CEA Saclay (IRFU & DRECAM) Detectors, electronics, acquisition, data handling, analysis

SPP : E. Armengaud, O. Besida, (G. Chardin), G. Gerbier, (L. Shoeffel, A de Lesquen, L Mosca) SEDI : X-F. Navick, H. Deschamps, M. Gros, S. Hervé, M. Karolak, B. Paul, (M. Fesquet), SPEC : (M. Chapellier), P.Pari, Temporary contributions SEDI/SIS : M. Carty, T. Chaleil, P. Lotrus; F. Nizery, J.L. Ritou, F. Senée Thesis : E. Grémion, A. Chantelauze (cotutelle FZK) Post-doc/ATER : (R. Lemrani, F. Schwamm) Detectors, cabling, cryogenics, analysis

CSNSM Orsav

L. Berge, A. Broniatowski, D. Carré, S. Collin, L. Dumoulin, A. Juillard, F. Lalu, S. Marnieros Post-doc/ATER : Emilano Olivieri

IPN Lyon

C Augier, M. De Jésus, P. Di Stefano, J. Gascon, M. Stern, V. Sanglard, + Instrumentation: F. Charlieux, D. Ducimetiere, L. Vagneron

♦ (IAP Paris

(C. Goldbach), G. Nollez)

Institut Néel Grenoble

Cryogenics, electronics

Thesis : S. Scorza, M.A. Verdier

Low radioactivity, analysis

A. Benoit, M. Caussignac, H. Rodenas+ Service électronique et SERAS

♦ FZ/ Universität Karlsruhe

J. Blümer, K. Eitel, H. Kluck,

♦ JINR Dubna

E. Yakushev.

Vetos, neutron detectors, background, Thesis : M. Horn, A. Chantelauze (cotutelle FZK) **Background, neutron radon monitors** Thesis : A. Lubashevski, S. Rozov

Thesis : O. Crauste, X. Defay, Y. Dolgorouki

Electronics, low radioactivity, analysis, detectors

The Edelweiss-II setup

- Operated at the Underground Laboratory of Modane (4µ/day/m²)
- Cryogenic installation (~ 20 mK) :
 - Reversed geometry cryostat
 - Use of pulse tubes
- Shieldings :
 - Clean room + deradonized air
 - Active muon veto (>98% coverage)
 - PE shield
 - Lead shield
 - \Rightarrow Y background reduced by ~2-4 wrt EDW1
- Facilities :
 - Remotely controlled sources for calibrations + regenerations
 - Detector storage & repair within the clean room
- 9 cool-downs already operated

The Edelweiss-II setup

- Operated at the Underground Laboratory of Modane (4µ/day/m²)
- Cryogenic installation (~ 20 mK) :
 - Reversed geometry cryostat
 - Use of pulse tubes
- Shieldings :
 - Clean room + deradonized air
 - Active muon veto (>98% coverage)
 - PE shield
 - Lead shield
 - \Rightarrow γ background reduced by ~2 wrt EDW1
- Facilities :
 - Remotely controlled sources for calibrations + regenerations
 - Detector storage & repair within the clean room
- 9 cool-downs already operated

The Edelweiss-II setup

Can operate at the same time: - R&D on several detectors

- Large exposure acquisitions

- Operated at the Underground Laboratory of Modane (4µ/day/m²)
- Cryogenic installation (~ 20 mK) :
 - Reversed geometry cryostat
 - Use of pulse tubes
- Shieldings :
 - Clean room + deradonized air
 - Active muon veto (>98% coverage)
 - PE shield
 - Lead shield
 - \Rightarrow γ background reduced by ~2 wrt EDW1
- Facilities :
 - Remotely controlled sources for calibrations + regenerations
 - Detector storage & repair within the clean room
- 9 cool-downs already operated

Edelweiss-II: the instrumented detectors

- The « standard » EDW-I NTD bolometers:
 - 2 ionization channels (center+guard)
 - NTD heat channel (edge of detector)
 - New holders, covers, cabling
 - May 2008 : 23 detectors (some with a β source on the cover for « calibration »)
- R&D bolometers for active β rejection
 - « NbSi » detectors (May 2008: 4 detectors)
 - « Interdigit » detectors (May 2008: 4 detectors)
- Some other detectors
 - A Ge73 detector (SD search)
 - A heat/scintillation Al_2O_3 bolometer

Run 9 setup (April-May)

Recoil energy (keV)

105 kg.d Ge NTD results -june08

NbSi detectors

• Detectors developed at CSNSM : identify surface events = athermal phonon measurement with Nb-Si films « replacing » the NTDs

• Surface event rejection ok, some problems in 2007 with film contacts / leak currents

Interdigit detectors

From preliminary see-level measurements:

- Surface event rejection > 99.5%
- Fiducial volume (*for a 200g detector*) ~ 50%

- Keep the standard phonon detector
- Modify the E field near the surfaces with interleaved electrodes (with guards: 6 ionization channels)
 Use 'b' and 'd' signals as

vetos agains surface events

200 g ID results : run 8@LSM

Low mass WIMP « DAMA solution » (5-10 GeV)

FIG. 5: Exclusion plots of spin-independent χN cross-section

Outlook

- EDELWEISS-II is taking data :
 - Quite large exposures in stable conditions already achieved, 5-month cycles with regular improvments and new detectors
 - keV threshold achieved, subkeV under way
 - « New Interdigit » back rejection efficient detector operational, simple and « cheap » detector
 - End of year : 12 detectors mounted
 - 2009 : 20 more => 12 kg total with 50 % fid mass
 - □ then *2 mass if results and funding ok (~ SuperCDMS), few M€

Aims

- ~10⁻⁸ pb @ 60-100 GeV WIMP mass (~600 kg.d), by 2009
- then possibly ~ 3 10^{-9} pb, if neutron backg low enough by 2011-2012
- Adress low mass (5-10 GeV) WIMP
- Adress 10⁻¹⁰ with EURECA