

## **Real-Time Soft-Error Rate (SER) Testing**

### J.L. Autran, S. Sauze, D. Munteanu

IM2NP-CNRS, Aix-Marseille Université, Marseille, France

P. Roche, G. Gasiot STMicroelectronics, Crolles, France



P. Loaiza, M. Zampaolo LSM, CEA-CNRS, Modane, France

**J. Borel** JB R&D, Saint-Etienne en Dévoluy, France



ULISSE Workshop - LSM Aussois – June 30, 2008



## Outline

- Introduction Context Basic mechanisms
- Test platforms Platform characteristics
- Devices under test
- Automatic Test Equipment
- Experimental results
- Comparison with accelerated tests and simulations
- Conclusions & perspectives



### **Introduction - Context**

Pionnering work by Ziegler and co-workers (IBM) in the 70s and 80s



J.F. Ziegler et al. *IBM experiments in soft fails in computer electronics (1978-1994)* IBM J. Res. Develop., Vol. 40, Number 1, 1998





Pb,Sn solder bump Underfill Random emissions Sensitive memory cells

## **Introduction - Context**

Electronic devices at ground level are primilarly impacted by:

 Secondary cosmic rays in the Earth atmosphere (neutrons)

 ✓ Telluric ray produced directly inside ICs due to residual traces (≤ ppB) of radioactive elements (alpha particles)

• Neutrons and alpha particles are the main aggressors playing a major role in the occurrence of SEE in SRAMs at ground level







/<sub>diff</sub>

# Main steps of SEE production in microelectronic devices (2/2)\*

I<sub>drift</sub>



Charge deposition by the energetic particle striking the sensitive region

 $\mathbf{1}$ 

Transport of the released charge into the device (drift and diffusion mechanisms)

Charge collection in the sensitive region of the device



\* After R. C. Baumann, *IEEE Trans. Device Mater. Reliab*., vol. 5(3), p. 305-316, Sept. 2005.



### Charge deposition, transport and collection occur in a <u>high complexity media</u> : the CIRCUIT







### **Introduction – Terminology**



#### \* JEDEC Standard JESD89A

Measurement and Reporting of Alpha Particles and Terrestrial Cosmic Ray-Induced Soft Errors in Semiconductor Devices, <u>http://www.jedec.org/download/search/JESD89A.pdf</u>



**SEU** = **Single Event Upset** (SRAM memory)



Snapshots courtesy of P. Roche



### **DSET** = <u>Digital Single Event Transient</u>

= constitute a <u>temporary voltage or current transient</u> generated by the collection of charge deposited by an energetic particle in a digital circuit



Even if the DSET does not induce an SEU in the struck circuit, it can **propagate** through the subsequent circuits and may be stored as incorrect data **when it reaches a latch or memory element** 





P. Shivakumar et al., in Proc. Int. Conf. Dep. Systems & Networks, DSN 2002.



### **Introduction - Context**

⇒ <u>Objective of this work</u>: perform real-time testing of SRAMs to evaluate neutron and alpha particle-induced SER Verify once during the technology qualification phase that both accelerated testing and simulation are accurate

<u>Principle of the experiment</u>: long-term (several months) exposure of a large amount (Gbits) of circuits to the natural radiation environment

- In altitude: to amplify the atmospheric neutron flux (typically by a factor of 3 to 15 at ground level)
- Underground: to remove the atmospheric neutron contribution (observed soft-errors are expected to be due to alpha particles)



### **Test platforms**





-1700 m under rock





+2552 m in Alp mountains





| ASTEP, Plateau de Bure, France |                |      |  |  |  |  |
|--------------------------------|----------------|------|--|--|--|--|
| Latitude (°N)                  | 44.6           |      |  |  |  |  |
| Longitude (°E)                 | 5.9            |      |  |  |  |  |
| Elevation (m)                  | 2552           |      |  |  |  |  |
| Atm. depth (g/c                | 757            |      |  |  |  |  |
| Cutoff rigidity (              | 5.0            |      |  |  |  |  |
| Relative                       | Active Sun low | 5.76 |  |  |  |  |
| neutron                        | Quiet Sun peak | 6.66 |  |  |  |  |
| flux                           | Average        | 6.21 |  |  |  |  |

## The Altitude SEE Test European Platform







XILINX "Rosetta" Experiment hosted by ASTEP XILINX<sup>®</sup>

> ASTEP System-SER

### www.astep.eu

### ASTEP main control PC (internet firewall, weather monitoring, control webwam...)





## The Modane Underground Laboratory (LSM)





#### **ULTRA LOW NOISE ENVIRONMENT**

- Depth: 4800 m water equivalent
- 4×10<sup>-6</sup> neutrons/cm<sup>2</sup>/s [2-6 MeV]

4.2 muon/m<sup>2</sup>/day

Radon < 20 mBq/m<sup>3</sup>

#### **Residual radioactive activity:**

|          | <sup>238</sup> U | <sup>232</sup> TH | <sup>40</sup> K             |
|----------|------------------|-------------------|-----------------------------|
| Mountain | (0.84±0.2)       | (2.45±0.2)        | (0.213±0.03)                |
| roc      | ppm              | ppm               | Bq/g                        |
| Tunnel   | (1.9±0.2)        | (1.4±0.2)         | (7.73±1.3) 10 <sup>-2</sup> |
| concrete | ppm              | ppm               | Bq/g                        |



### **Devices under test**

- SRAM test vehicle designed and manufactured by STMicroelectronics in CMOS 130 nm
- Fully characterized and simulated testchip :
  - ✓ *alphas* (ST and IM2NP with Am<sup>241</sup>)
  - Instrument of the second se
  - TCAD (ST with Synopsys tool suite)
  - SER Simulation (proprietary codes)
- 4 Mbits per device
- 912 devices
- Total capacity > 3.6 Gbits



Bitcell area = 2.50 μm<sup>2</sup>



## The Automatic Test Equipment (ATE)



- Data writing (32 bits) with selected pattern
- For each memory point, Writing and rereading with data control
- If data correct, go test the next memory point
- If data state not correct, try to reread twice the data
- If data correct after rereading, error identified as "Transient Soft Error"
- If data still not correct, test twice to rewrite and to reread.
- If control valid after rewriting and rereading, error identified as "Static Soft Error"
- If control not valid after rewriting and rereading, error identified as "Single-Event Hard Error"

Frror list of Rack 1 : Mother board 1 : Daughter board 1 : Memory 1

| Date     | Heure    | Temp. | Туре  | Write           | Read     | G.address | M.address |
|----------|----------|-------|-------|-----------------|----------|-----------|-----------|
| 11/03/05 | 10:30:00 | 85° C | TSE   | 55555555        | 55555554 | 10000000  | 00000     |
| 11/03/05 | 10:30:01 | 85° C | TSE   | AAAAAAAA        | ٨٨٨8٨٨٨  | 10040005  | 00005     |
| 11/03/05 | 10:30:01 | 84° C | TSE   | FFFFFFF         | FFFFEFFF | 10A60100  | 00100     |
| 11/03/05 | 10:30:02 | 84° C | TSE   | 00000000        | 10000000 | 13F84539  | 04539     |
| 11/03/05 | 10:30:03 | 84° C | SSE   | 7777777         | 7x777277 | 14720123  | 00123     |
| 11/03/05 | 10:30:04 | 85° C | SSE   | 55555555        | 555x5555 | 14720124  | 00124     |
| 11/03/05 | 10:30:04 | 86° C | TSE   | <u>مممممممم</u> | ΑΑΑΑΒΑΑΑ | 14761234  | 01234     |
| 11/03/05 | 10:30:04 | 90° C | SEHE  | FFFFFFF         | xFFFFFF1 | 15256789  | 16789     |
| 11/03/05 | 10:30:05 | 95° C | SEHE  | 00000000        | 00F00x00 | 15256790  | 16790     |
| 11/03/05 | 10:30:05 | 98° C | VDD 2 |                 |          | 16080000  |           |

Exit







**Daughtercard** (×640)

**Chip**(×1280)



## **Experimental Results**

Number of fails measured in both altitude and cave during 216 days (>7 months)





### **Experimental Results**

### Soft-Error Rate measured in both altitude and cave



Neutron-SER cannot be directly extracted due to alpha contribution Data directly gives access to alpha-SER (neutron contribution negligible)



### **Experimental Results**

### Neutron and alpha-SER extraction





### **Comparison with accelerated tests**

### • Alpha SER

- Real-time @ LSM (this work)
- Accelerated test @ ST (1)

1530 FIT/Mbit

380 FIT/Mbit

(1) Using an Am<sup>241</sup> α-source and assuming an alpha-emissivity of <u>10<sup>-3</sup> α/cm<sup>2</sup>/h</u> for the semiconductor processing and packaging materials
 α-counting measurements using gas proportional counters @ ST give ~2×10<sup>-3</sup> α/cm<sup>2</sup>/h

 $\Rightarrow$  Real-time testing @ LSM allows us to more accurately quantify the  $\alpha$ -emission rate for the chip materials:

 $10^{-3} \times (1530/380) = \frac{4 \times 10^{-3} \alpha / cm^2 / h}{10^{-3} \alpha / cm^2 / h}$ 

⇒ Confirms the ultra-low alpha-emission level of chip materials within the experimental error margins for the α-counting and lot-to-lot variations



## Comparison with accelerated tests and SER simulation

- Neutron SER
  - ✓ Real-time @ ASTEP (this work)
  - ✓ Accelerated test @ TRIUMF [1]
  - ✓ 3D SER simulation [2]

504 FIT/Mbit 665 FIT/Mbit 700 FIT/Mbit

⇒ Values in good agreement (±15%) within the experimental error margins for the different techniques

[1] J.L. Autran et al. IEEE Transactions on Nuclear Science, 2007, Vol. 54, n°4, p. 1002-1009.
[2] P. Roche et al., IEEE Transactions on Nuclear Science, 2003, Vol. 50, N°6, pp. 2046-2054.



### Conclusion

- This work: real-time soft-error rate testing of 3.6 GBits of bulk 130 nm SRAMs in both altitude and underground environments.
- Combination of these two tests allowed us to separate the components of the SER induced by atmospheric neutrons from that caused by on-chip alpha-particle emitters.
- Here, the alpha contribution is found to be three times larger than the neutron contribution at sea-level.
- This work shows the importance of combining real-time, accelerated and α-emission characterizations, to accurately quantify the soft-error rate of a given technology.
- Such a multi-characterization approach should ensure that the different extracted values are consistent with the underlying calculation hypothesis and are within experimental error margins.



### **Perspectives**

### Simultaneous measurements of SER and cosmic-ray neutron flux

→ IM2NP recently developed a high performance neutron monitor (super 3-NM64) to provide in situ and real-time data of the atmospheric neutron flux impacting SER experiments on the ASTEP Platform.

























### **Perspectives**

New combined Altitude/Cave experiment (currently in progress) on 65nm Bulk SRAMs with 2 identical setups

The 65nm setup at ASTEP Experiment started on January 21, 2008



The 65nm setup at LSM Experiment started on April 11, 2008

















## Acknowledgments















## **Contact:**

### Jean-Luc AUTRAN, IM2NP-CNRS, Marseille, France

jean-luc.autran@im2np.fr; info@astep.eu

www.astep.eu